3.2547 \(\int (d+e x)^m \sqrt{a+b x+c x^2} \, dx\)

Optimal. Leaf size=189 \[ \frac{\sqrt{a+b x+c x^2} (d+e x)^{m+1} F_1\left (m+1;-\frac{1}{2},-\frac{1}{2};m+2;\frac{2 c (d+e x)}{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e},\frac{2 c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{e (m+1) \sqrt{1-\frac{2 c (d+e x)}{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \sqrt{1-\frac{2 c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}} \]

[Out]

((d + e*x)^(1 + m)*Sqrt[a + b*x + c*x^2]*AppellF1[1 + m, -1/2, -1/2, 2 + m, (2*c
*(d + e*x))/(2*c*d - (b - Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/(2*c*d - (b + S
qrt[b^2 - 4*a*c])*e)])/(e*(1 + m)*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b - Sqrt[b^
2 - 4*a*c])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])

_______________________________________________________________________________________

Rubi [A]  time = 0.655386, antiderivative size = 189, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091 \[ \frac{\sqrt{a+b x+c x^2} (d+e x)^{m+1} F_1\left (m+1;-\frac{1}{2},-\frac{1}{2};m+2;\frac{2 c (d+e x)}{2 c d-\left (b-\sqrt{b^2-4 a c}\right ) e},\frac{2 c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{e (m+1) \sqrt{1-\frac{2 c (d+e x)}{2 c d-e \left (b-\sqrt{b^2-4 a c}\right )}} \sqrt{1-\frac{2 c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}}} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x)^m*Sqrt[a + b*x + c*x^2],x]

[Out]

((d + e*x)^(1 + m)*Sqrt[a + b*x + c*x^2]*AppellF1[1 + m, -1/2, -1/2, 2 + m, (2*c
*(d + e*x))/(2*c*d - (b - Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/(2*c*d - (b + S
qrt[b^2 - 4*a*c])*e)])/(e*(1 + m)*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b - Sqrt[b^
2 - 4*a*c])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 36.9137, size = 175, normalized size = 0.93 \[ \frac{\left (d + e x\right )^{m + 1} \sqrt{a + b x + c x^{2}} \operatorname{appellf_{1}}{\left (m + 1,- \frac{1}{2},- \frac{1}{2},m + 2,\frac{c \left (- 2 d - 2 e x\right )}{b e - 2 c d - e \sqrt{- 4 a c + b^{2}}},\frac{c \left (2 d + 2 e x\right )}{2 c d - e \left (b + \sqrt{- 4 a c + b^{2}}\right )} \right )}}{e \left (m + 1\right ) \sqrt{\frac{c \left (- 2 d - 2 e x\right )}{2 c d - e \left (b + \sqrt{- 4 a c + b^{2}}\right )} + 1} \sqrt{\frac{c \left (2 d + 2 e x\right )}{b e - 2 c d - e \sqrt{- 4 a c + b^{2}}} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**m*(c*x**2+b*x+a)**(1/2),x)

[Out]

(d + e*x)**(m + 1)*sqrt(a + b*x + c*x**2)*appellf1(m + 1, -1/2, -1/2, m + 2, c*(
-2*d - 2*e*x)/(b*e - 2*c*d - e*sqrt(-4*a*c + b**2)), c*(2*d + 2*e*x)/(2*c*d - e*
(b + sqrt(-4*a*c + b**2))))/(e*(m + 1)*sqrt(c*(-2*d - 2*e*x)/(2*c*d - e*(b + sqr
t(-4*a*c + b**2))) + 1)*sqrt(c*(2*d + 2*e*x)/(b*e - 2*c*d - e*sqrt(-4*a*c + b**2
)) + 1))

_______________________________________________________________________________________

Mathematica [A]  time = 0.432009, size = 207, normalized size = 1.1 \[ \frac{\sqrt{a+x (b+c x)} (d+e x)^{m+1} F_1\left (m+1;-\frac{1}{2},-\frac{1}{2};m+2;\frac{2 c (d+e x)}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e},\frac{2 c (d+e x)}{2 c d+\left (\sqrt{b^2-4 a c}-b\right ) e}\right )}{e (m+1) \sqrt{\frac{e \left (\sqrt{b^2-4 a c}-b-2 c x\right )}{e \left (\sqrt{b^2-4 a c}-b\right )+2 c d}} \sqrt{\frac{e \left (\sqrt{b^2-4 a c}+b+2 c x\right )}{e \left (\sqrt{b^2-4 a c}+b\right )-2 c d}}} \]

Warning: Unable to verify antiderivative.

[In]  Integrate[(d + e*x)^m*Sqrt[a + b*x + c*x^2],x]

[Out]

((d + e*x)^(1 + m)*Sqrt[a + x*(b + c*x)]*AppellF1[1 + m, -1/2, -1/2, 2 + m, (2*c
*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])*e), (2*c*(d + e*x))/(2*c*d + (-b +
Sqrt[b^2 - 4*a*c])*e)])/(e*(1 + m)*Sqrt[(e*(-b + Sqrt[b^2 - 4*a*c] - 2*c*x))/(2*
c*d + (-b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[(e*(b + Sqrt[b^2 - 4*a*c] + 2*c*x))/(-2*
c*d + (b + Sqrt[b^2 - 4*a*c])*e)])

_______________________________________________________________________________________

Maple [F]  time = 0.133, size = 0, normalized size = 0. \[ \int \left ( ex+d \right ) ^{m}\sqrt{c{x}^{2}+bx+a}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^m*(c*x^2+b*x+a)^(1/2),x)

[Out]

int((e*x+d)^m*(c*x^2+b*x+a)^(1/2),x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{c x^{2} + b x + a}{\left (e x + d\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*x^2 + b*x + a)*(e*x + d)^m,x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + b*x + a)*(e*x + d)^m, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\sqrt{c x^{2} + b x + a}{\left (e x + d\right )}^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*x^2 + b*x + a)*(e*x + d)^m,x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x + a)*(e*x + d)^m, x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \left (d + e x\right )^{m} \sqrt{a + b x + c x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**m*(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((d + e*x)**m*sqrt(a + b*x + c*x**2), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{c x^{2} + b x + a}{\left (e x + d\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*x^2 + b*x + a)*(e*x + d)^m,x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + b*x + a)*(e*x + d)^m, x)